Tag Archives: huntington’s

The Genetics Behind Huntington’s

Huntington Disease is a rare genetic condition that most people have never even heard of unless a) they study it b) they personally know someone with the disease or c) they are a fan of House. Luckily for me only a) and c) apply in this situation. However, I believe Huntington’s like a variety of other diseases is something the public needs to be educated about because awareness really is the greatest way to inspire research into any field.

As autosomal dominant disorder this makes Huntington’s especially dangerous because as a dominant trait a person only needs one affected allele to develop the disorder. Were the trait recessive such as the trait for hemophaelia, for example, then the likelihood of having Huntington’s is significantly lowered. When a trait is autosomal this means that it is no carried by any of the sex chromosomes (X or Y), rather is carried by any of the other 22 chromosomes the human body has. In Huntington’s the gene affected is located on chromosome 4, specially on the p (upper, shorter) arm.

huntington

 

 

 

 

 

 

 

 

 

 

 

The symptoms of Huntington’s has already been discussed on a previous post on basal ganglia disorders; however, in summation it results in damage to the striatum and cerebral cortex causing changes in personality including mood swings, involuntary movements known as hypokinesia and eventually dementia. As is common with most genetic disorders, the symptoms do not appear until adulthood. In Huntington’s the symptoms usually arise around mid-age, but unfortunately it can arise earlier than our 30s or 40s if unlucky. Once symptoms start appearing the person usually has about another 5 to 15 years until death. The age at which symptoms appear directly correlates with the genetics behind the abnormal gene.

Huntington’s is part of numerous diseases including varies ataxias and fragile X syndrome that result due to trinucleotide repeat. Specifically, Huntington’s is due to a repeat of the CAG trinucleotide. Normal alleles carry about 10 to 35 copies, but those suffering from Huntington’s and various other neurodegenerative diseases have more than 40 repeats. People with around 60 repeats with develop Huntington’s around the age of 20. These repeats in CAG result in the production of a “mutant protein” that eventually fill the striatum and cerebral cortex causing degeneration and ultimately death of these brain cells. In healthy individuals the gene involved in Huntington’s encodes for a large protein known as huntingtin (Htt), which when normal enhances the production of a protein (BDNF) necessary for the survival of the cells in the striatum and cerebral cortex.

Stay tuned for a post later this week on current experimental treatment on Huntington’s! Thank you for reading :)

Citation:

Cummings, Michael. “Genetics of Behavior.” Human Heredity: Principles and Issues. 9th ed. Belmont: Brooks/Cole, 2011. 405-06. Print.

Basal Ganglia Disorders: Parkinson’s and Huntington’s Disease

My last post was exclusively about basal ganglia and the reason for this was to help clarify the parts of the brain directly involved in two very infamous disorders: Parkinson’s and Huntington’s Disease.

brainslice1

Parkinson’s Disease

Parkinson’s disease is far more recognized that Huntington’s disease; however, thanks to the character Thirteen on the tv show House that might be changing. Parkinson’s disease effects about 1% of all people over the age of 50; however, as you can see from the video posted below, this is not always the case. Another example is actor Michael J. Fox, who was diagnosed with Parkinson’s at the age of 30. He has since become an activist for the cure of Parkinson’s, which led him to found the Michael J. Fox Foundation. It is not that uncommon to know someone with the disease. Many people can in fact recognize it based on the very characteristic tremors.

brainslice2

Parkinson’s is classified by hypokinesia. The symptoms of Parkinson’s include slowness of movement or bradykinesiadifficulty in initiating ‘willed’ movements or akinesia, increases muscle tone or rigidity, and of course, tremors in the hands and jaws even at rest. Many  of those who suffer from the disease will eventually show signs of cognitive decline. More specifically, the substantia nigra’s input to the striatum. This input features the neurotransmitter dopamine, which facilitates the activity of the motor loop by activating cells in the putamen. As noted in the previous post, the putamen forms an inhibitory connection with neurons in the globus pallidus, which then forms an inhibitory connection with the thalamus (VLo). Due to the depletion of dopamine, the ‘funnel’ between VLo and the supplementary motor area (SMA) closes. As a result, the victim of Parkinson’s will have impaired motor function with symptoms such as ones listed above.

Treatment Options for Parkinson’s Disease

Even through Parkinson’s cannot be cured, therapies do exist to try to ease or deter the symptoms. Most therapies aim at enhancing the levels of dopamine delivered to the caudate nucleus and the putamen. The most common type of medication is known as L-dopa, which is a precursor for dopamine. This means that it participates the chemical reaction that produces dopamine. This treatment does alleviate some of the symptoms; however, it cannot do anything to stop the progressive course of the disease, nor slow the rate of cell degeneration in the substantia nigra. Currently, experiments are being conducted to test whether graftng non-neural cells, manipulated to produce dopamine, into the basal ganglia can help. Also, stem cell research shows promise to one day provide an effective treatment as well.

Huntington’s Disease

Whereas Parkinson’s is characterized by hypokinesia, Huntington’s is characterized by hyperkinesia or excessive movement. As tragic as Parkinson’s disease is, Huntington’s does seem far more frightening. A hereditary, progressive and always fatal disorder, Huntington’s  symptoms include dyskinesia or abnormal movements, dementia and disorder of the personality. The scariest part of the disorder is that the symptoms do not appear until adulthood, so unless the person knows that they have a history of the disorder, they can easily pass on the genes of Huntington’s to their children without even knowing that they have it. Genetic tests can be performed to find out for sure, but for many people it is too late at that point. The name Huntington’s comes from the abnormal gene carried by the patient. The first and most notable sign of the disease is known chorea: spontaneous, uncontrollable movements with rapid, irregular flow resulting a flicking movement in various parts of the body. In fact, Huntington’s disease can also be called Huntington’s Chorea. The devastating effects of the disease is due to the profound neuron loss in caudate nucleus, putamen and globus pallidus as well as cell loss in any other part of the cerebral cortex. The fact that Huntington’s can strike any part of the brain means that many patients suffer a variety of different symptoms, sometimes making it difficult to diagnose without a genetic test. Damage to the basal ganglia results in a loss of inhibitory output to the thalamus (VLo) resulting in the abnormal movements.

brainslice3Unfortunately, due to the progressive nature of the disorder and the genetic component, treatment for Huntington’s is virtually non-existent. Most patients with the disorder have their symptoms treated with various medications ranging from anti-depressants to sedatives and anti-psychotics.