The Ebola Virus: What is it actually?

The Ebola Virus has been getting a lot of news coverage recently with a massive outbreak in West Africa. As of March this year the death toll is the highest of any Ebola outbreak ever recorded. The exact number is still increasing, but over one thousand individuals have been exposed with causalities now around 800 (Sender, 2014). Obviously this virus is deadly and scary, but what exactly is it? My family and I were discussing these outbreaks over dinner, and I thought that a great way to learn about it is to do some research.

ebola

History 

Firstly, the Ebola virus causes Ebola virus disease (EVD) or Ebola haemorrhagic fever (EHF) in humans. It is part of Genus Ebolavirus and the Filoviridae family. The Genus Ebolavirus consists of five distinct species:

  1. Zaire ebolavirus (EBOV)
  2. Bundibugyo ebolavirus (BDBV)
  3. Reston ebolavirus (RESTV)
  4. Taï Forest ebolavirus (TAFV)
  5. Sudan ebolavirus (SUDV)

Not all of these species are dangerous to humans. However, BDBV, EBOV and SUDV are all associated with mass outbreaks of EVD in Africa. Out of these three, EBOV is the most deadly. According to the World Health Organisation (World Health Organization, 2014) the RESTV species can infect humans, but they do not cause severe illness or death as is the case with the other three. Since 1994, EBOV and the TAFV species has infected chimpanzees and gorillas (WHO, 2014). Outbreaks of severe EVD have also been found in macaque monkeys in the Philippines in 1989, 1990 and 1996. Not only do outbreaks in non-human primates cause concern for them, but it also creates concern that one day EVD in humans can be brought on by the TAFV species.

ebola2

Map of outbreaks of the Ebola virus in Africa by strain and confirmed contractions. Distribution of Ebola Virus Outbreaks 1979-2008, South Africa Created by: Zach Orecchio University of South Florida Geography Dep. Data Source: http://www.cdc.gov/ncidod/dvrd/spb/mnpages/dispages/ebola/ebolamap.htm

EVD in humans first appear in 1976 in Western Africa. The virus occurred in two simultaneous outbreaks in two different villages, in Nzara, Sudan and Yambuku, Democratic Republic of Congo. The outbreak in the DRC fell along the Ebola River, hence the name.

Aetiology

As mentioned above, the Ebola virus is a virological taxon part of Genus Ebolavirus. The Ebola virus, as an a cellular virus, replicates through a host cell. The virus attaches itself to the host cell’s receptors through glycoproteins. Then it fuses its own viral membrane with the cell’s membrane. This fusion process allows the virus to release its nucleocapsid (which contains the virus’ genetic material) into the cytoplasm of the host cell. Using the cellular machinery of its host, the virus creates viral proteins and then as the protein levels rise, new nucleocapsids are also created (Noda et al. 2006). As the new genetic material rises in number, budding occurs. Budding is where the virus, creates an “envelope” using the host’s cell membrane. Essentially, creating a new virus from the host itself (ibid). Eventually, as more and more viruses are created from the host, the host will be destroyed.

Ultimately, the number of viruses in the body begins to wreak havoc. In humans and other primates, the virus eventually causes extreme hemorrhagic fever and in most cases, death.

Transmission 

Ebola is transmitted to humans through contact with infected bodily fluids (ie. blood, secretions). Contact can be direct through broken skin or mucous membranes or indirectly with environments contaminated with the fluids.The incubation period (2 to 21 days) means that people can get infected by a person that does not even know they are ill. It is natural that family and friends want to mourn their recently deceased loved ones; however, the mourning process can become a high risk activity. Often, the burial ceremonies involve direct contact with the deceased person before the virus has died. In other words, healthy individuals are being infected by their infected, deceased loved one (WHO, 2014). Other common ways Ebola is transmitted is through recovered individuals and working in the healthcare field. Any one that has sex with a man recovered from Ebola can become infected from their semen. The semen carries the Ebola virus up to seven weeks after recovery, hence the man will feel healthy, engage in sexual activity and unknowingly, infect others (WHO, 2014). Healthcare professions are at high risk when the proper sanitary precautions are not enforced or possible. Lastly, people that work with infected primates or pigs can also become infected with the disease; however, the likelihood lesser than contact with a diseased human. As stated above, not all viruses that have infected animals are capable of causing EVD in humans.

Currently there is debate that fruit bats, in particular genera Hypsignathus monstrosus, Epomops franqueti and Myonycteris torquata are natural hosts for Ebola. This hypothesis is based on an overlap between the EVD outbreaks and the geographic distribution of fruit bats in Africa.

Symptoms and Diagnostics

A major concern when treating Ebola is that it carries symptoms similar to many other diseases. According to the World Health Organization (2014) “malaria, typhoid fever, shigellosis, cholera, leptospirosis, plague, rickettsiosis, relapsing fever, meningitis, hepatitis and other viral hemorrhagic fevers” all need to be ruled out. Of course with equipment available in the Western world, this process is quite simple. Ebola can be precisely diagnosed by running a variety of diagnostic tests including but not limited to electron microscopy, antigen detection tests and virus isolation by cell culture (WHO, 2014). These diagnostic tools can rule out other disorders by checking for low white blood cell and platelet counts plus elevated liver enzymes (WHO, 2014).

In Africa, however, these diagnostic tools are not always available. Therefore, it is important that the symptoms are clearly laid out and understood. EVD causes “severe acute viral illness” with symptoms including headache, muscle pain, weakness, fever and sore throat. These initial symptoms then progress into vomiting, rash, diarrhea, reduced kidney and liver function and sometimes internal and/or external bleeding.

Treatment and Prevention 

Currently there is no vaccine for EVD despite many being tested. Those infected with EVD are being treated with various drug therapies, which are always being improved and remedied. Until a vaccine or a truly efficient treatment has been discovered, patients with EVD are being treated in intensive care where they are holistically cared for, keeping them hydrated through IV with an electrolyte solution.

As the mortality rate for Ebola is so high (as high as 90%) the best way to treat Ebola is to prevent it from happening in the first place (BMC, 2014). In other words, the best way to handle Ebola is to prevent it. For the general public this means educating them on how the disease is transmitted, teaching them proper sanitation procedures and providing them with ways to keep clean and safe such as making condoms and cleaning products readily available.

For more information do your own research or check out some of the websites in my bibliography.

Thank you for reading!

Emma

Bibliography 

Assembly and Budding of Ebolavirus. (n.d.). Retrieved August 6, 2014, from

Ebola virus. (2014, May 8). Retrieved August 6, 2014, from http://en.wikipedia.org/wiki/Ebola_virus

Ebola Virus. (2014, August 4). Retrieved August 6, 2014, from http://www.cdc.gov/vhf/ebola/

Ebola Virus. (2014, June 17). Retrieved August 6, 2014, from https://www.bcm.edu/departments/molecular-virology-and-microbiology/ebola

Ebola virus disease. (2014, April 8). Retrieved August 6, 2014, from http://en.wikipedia.org/wiki/Ebola_virus_disease

Ebola virus disease. (2014, April 1). Retrieved August 1, 2014, from http://www.who.int/mediacentre/factsheets/fs103/en

Ebola virus disease. (2014, January 1). Retrieved August 6, 2014, from http://www.who.int/mediacentre/factsheets/fs103/en/

Noda, T., Ebihara, H., Muramoto, Y., Fujii, K., Takada, A., Sagara, H., … Kawaoka, Y. (2006, September 29). Assembly and Budding of Ebolavirus. Retrieved August 6, 2014, from Noda, T., Ebihara, H., Muramoto, Y., Fujii, K., Takada, A., Sagara, H., … Kawaoka, Y. (n.d.). Assembly and Budding of Ebolavirus. Retrieved August 6, 2014.

Sender, H. (2014, July 31). Where Is The Ebola Virus? Outbreak Map Shows Virus Deaths In West Africa. Retrieved August 6, 2014, from http://www.ibtimes.com/where-ebola-virus-outbreak-map-shows-virus-deaths-west-africa-1645012